Command line interfaces#
SLEAP provides several types of functionality accessible through a command prompt.
GUI#
sleap-label
#
sleap-label
runs the GUI application for labeling and viewing .slp
files.
usage: sleap-label [-h] [--nonnative] [--profiling] [--reset] [labels_path]
positional arguments:
labels_path Path to labels file
optional arguments:
-h, --help show this help message and exit
--nonnative Don't use native file dialogs
--profiling Enable performance profiling
--reset Reset GUI state and preferences. Use this flag if the GUI
appears incorrectly or fails to open.
Training#
sleap-train
#
sleap-train
is the command-line interface for training. Use this for training on a remote machine/cluster/colab notebook instead of through the GUI.
usage: sleap-train [-h] [--video-paths VIDEO_PATHS] [--val_labels VAL_LABELS]
[--test_labels TEST_LABELS] [--tensorboard] [--save_viz]
[--keep_viz] [--zmq] [--run_name RUN_NAME] [--prefix PREFIX]
[--suffix SUFFIX]
training_job_path [labels_path]
positional arguments:
training_job_path Path to training job profile JSON file.
labels_path Path to labels file to use for training. If specified,
overrides the path specified in the training job
config.
optional arguments:
-h, --help show this help message and exit
--video-paths VIDEO_PATHS
List of paths for finding videos in case paths inside
labels file are not accessible.
--val_labels VAL_LABELS, --val VAL_LABELS
Path to labels file to use for validation. If
specified, overrides the path specified in the
training job config.
--test_labels TEST_LABELS, --test TEST_LABELS
Path to labels file to use for test. If specified,
overrides the path specified in the training job
config.
--base_checkpoint BASE_CHECKPOINT
Path to base checkpoint (directory containing best_model.h5)
to resume training from.
--tensorboard Enable TensorBoard logging to the run path if not
already specified in the training job config.
--save_viz Enable saving of prediction visualizations to the run
folder if not already specified in the training job
config.
--keep_viz Keep prediction visualization images in the run
folder after training if --save_viz is enabled.
--zmq Enable ZMQ logging (for GUI) if not already specified
in the training job config.
--run_name RUN_NAME Run name to use when saving file, overrides other run
name settings.
--prefix PREFIX Prefix to prepend to run name.
--suffix SUFFIX Suffix to append to run name.
--cpu Run training only on CPU. If not specified, will use
available GPU.
--first-gpu Run training on the first GPU, if available.
--last-gpu Run training on the last GPU, if available.
--gpu GPU Run training on the i-th GPU on the system. If 'auto', run on
the GPU with the highest percentage of available memory.
sleap-export
#
sleap-export
is a command-line interface for exporting trained models as a TensorFlow graph for use in other applications. See this guide for details on how TensorFlow saves models and the sleap.nn.inference.InferenceModel.export_model
documentation.
usage: sleap-export [-h] [-m MODELS] [-e [EXPORT_PATH]]
optional arguments:
-h, --help show this help message and exit
-m MODELS, --model MODELS
Path to trained model directory (with training_config.json). Multiple
models can be specified, each preceded by --model.
-e [EXPORT_PATH], --export_path [EXPORT_PATH]
Path to output directory where the frozen model will be exported to.
Defaults to a folder named 'exported_model'.
-r, --ragged RAGGED
Keep tensors ragged if present. If ommited, convert
ragged tensors into regular tensors with NaN padding.
-n, --max_instances MAX_INSTANCES
Limit maximum number of instances in multi-instance models.
Not available for ID models. Defaults to None.
Inference and Tracking#
sleap-track
#
sleap-track
is the command-line interface for running inference using models which have already been trained. Use this for running inference on a remote machine such as an HPC cluster or Colab notebook.
If you specify how many identities there should be in a frame (i.e., the number of animals) with the --tracking.clean_instance_count
argument, then we will use a heuristic method to connect “breaks” in the track identities where we lose one identity and spawn another. This can be used as part of the inference pipeline (if models are specified), as part of the tracking-only pipeline (if the predictions file is specified and no models are specified), or by itself on predictions with pre-tracked identities (if you specify --tracking.tracker none
). See Tracking and proofreading for more details on tracking.
usage: sleap-track [-h] [-m MODELS] [--frames FRAMES] [--only-labeled-frames] [--only-suggested-frames] [-o OUTPUT] [--no-empty-frames]
[--verbosity {none,rich,json}] [--video.dataset VIDEO.DATASET] [--video.input_format VIDEO.INPUT_FORMAT]
[--video.index VIDEO.INDEX] [--cpu | --first-gpu | --last-gpu | --gpu GPU] [--max_edge_length_ratio MAX_EDGE_LENGTH_RATIO]
[--dist_penalty_weight DIST_PENALTY_WEIGHT] [--batch_size BATCH_SIZE] [--open-in-gui] [--peak_threshold PEAK_THRESHOLD]
[-n MAX_INSTANCES] [--tracking.tracker TRACKING.TRACKER] [--tracking.max_tracking TRACKING.MAX_TRACKING]
[--tracking.max_tracks TRACKING.MAX_TRACKS] [--tracking.target_instance_count TRACKING.TARGET_INSTANCE_COUNT]
[--tracking.pre_cull_to_target TRACKING.PRE_CULL_TO_TARGET] [--tracking.pre_cull_iou_threshold TRACKING.PRE_CULL_IOU_THRESHOLD]
[--tracking.post_connect_single_breaks TRACKING.POST_CONNECT_SINGLE_BREAKS]
[--tracking.clean_instance_count TRACKING.CLEAN_INSTANCE_COUNT] [--tracking.clean_iou_threshold TRACKING.CLEAN_IOU_THRESHOLD]
[--tracking.similarity TRACKING.SIMILARITY] [--tracking.match TRACKING.MATCH] [--tracking.robust TRACKING.ROBUST]
[--tracking.track_window TRACKING.TRACK_WINDOW] [--tracking.min_new_track_points TRACKING.MIN_NEW_TRACK_POINTS]
[--tracking.min_match_points TRACKING.MIN_MATCH_POINTS] [--tracking.img_scale TRACKING.IMG_SCALE]
[--tracking.of_window_size TRACKING.OF_WINDOW_SIZE] [--tracking.of_max_levels TRACKING.OF_MAX_LEVELS]
[--tracking.save_shifted_instances TRACKING.SAVE_SHIFTED_INSTANCES] [--tracking.kf_node_indices TRACKING.KF_NODE_INDICES]
[--tracking.kf_init_frame_count TRACKING.KF_INIT_FRAME_COUNT]
[data_path]
positional arguments:
data_path Path to data to predict on. This can be one of the following: A .slp file containing labeled data; A folder containing multiple
video files in supported formats; An individual video file in a supported format; A CSV file with a column of video file paths.
If more than one column is provided in the CSV file, the first will be used for the input data paths and the next column will be
used as the output paths; A text file with a path to a video file on each line
optional arguments:
-h, --help show this help message and exit
-m MODELS, --model MODELS
Path to trained model directory (with training_config.json). Multiple models can be specified, each preceded by --model.
--frames FRAMES List of frames to predict when running on a video. Can be specified as a comma separated list (e.g. 1,2,3) or a range
separated by hyphen (e.g., 1-3, for 1,2,3). If not provided, defaults to predicting on the entire video.
--only-labeled-frames
Only run inference on user labeled frames when running on labels dataset. This is useful for generating predictions to compare
against ground truth.
--only-suggested-frames
Only run inference on unlabeled suggested frames when running on labels dataset. This is useful for generating predictions for
initialization during labeling.
-o OUTPUT, --output OUTPUT
The output filename or directory path to use for the predicted data. If not provided, defaults to '[data_path].predictions.slp'.
--no-empty-frames Clear any empty frames that did not have any detected instances before saving to output.
--verbosity {none,rich,json}
Verbosity of inference progress reporting. 'none' does not output anything during inference, 'rich' displays an updating
progress bar, and 'json' outputs the progress as a JSON encoded response to the console.
--video.dataset VIDEO.DATASET
The dataset for HDF5 videos.
--video.input_format VIDEO.INPUT_FORMAT
The input_format for HDF5 videos.
--video.index VIDEO.INDEX
Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video
path.
--cpu Run inference only on CPU. If not specified, will use available GPU.
--first-gpu Run inference on the first GPU, if available.
--last-gpu Run inference on the last GPU, if available.
--gpu GPU Run training on the i-th GPU on the system. If 'auto', run on the GPU with the highest percentage of available memory.
--max_edge_length_ratio MAX_EDGE_LENGTH_RATIO
The maximum expected length of a connected pair of points as a fraction of the image size. Candidate connections longer than
this length will be penalized during matching. Only applies to bottom-up (PAF) models.
--dist_penalty_weight DIST_PENALTY_WEIGHT
A coefficient to scale weight of the distance penalty. Set to values greater than 1.0 to enforce the distance penalty more
strictly. Only applies to bottom-up (PAF) models.
--batch_size BATCH_SIZE
Number of frames to predict at a time. Larger values result in faster inference speeds, but require more memory.
--open-in-gui Open the resulting predictions in the GUI when finished.
--peak_threshold PEAK_THRESHOLD
Minimum confidence map value to consider a peak as valid.
-n MAX_INSTANCES, --max_instances MAX_INSTANCES
Limit maximum number of instances in multi-instance models. Not available for ID models. Defaults to None.
--tracking.tracker TRACKING.TRACKER
Options: simple, flow, simplemaxtracks, flowmaxtracks, None (default: None)
--tracking.max_tracking TRACKING.MAX_TRACKING
If true then the tracker will cap the max number of tracks. (default: False)
--tracking.max_tracks TRACKING.MAX_TRACKS
Maximum number of tracks to be tracked by the tracker. (default: None)
--tracking.target_instance_count TRACKING.TARGET_INSTANCE_COUNT
Target number of instances to track per frame. (default: 0)
--tracking.pre_cull_to_target TRACKING.PRE_CULL_TO_TARGET
If non-zero and target_instance_count is also non-zero, then cull instances over target count per frame *before* tracking.
(default: 0)
--tracking.pre_cull_iou_threshold TRACKING.PRE_CULL_IOU_THRESHOLD
If non-zero and pre_cull_to_target also set, then use IOU threshold to remove overlapping instances over count *before*
tracking. (default: 0)
--tracking.post_connect_single_breaks TRACKING.POST_CONNECT_SINGLE_BREAKS
If non-zero and target_instance_count is also non-zero, then connect track breaks when exactly one track is lost and exactly
one track is spawned in frame. (default: 0)
--tracking.clean_instance_count TRACKING.CLEAN_INSTANCE_COUNT
Target number of instances to clean *after* tracking. (default: 0)
--tracking.clean_iou_threshold TRACKING.CLEAN_IOU_THRESHOLD
IOU to use when culling instances *after* tracking. (default: 0)
--tracking.similarity TRACKING.SIMILARITY
Options: instance, normalized_instance, object_keypoint, centroid, iou (default: instance)
--tracking.match TRACKING.MATCH
Options: hungarian, greedy (default: greedy)
--tracking.robust TRACKING.ROBUST
Robust quantile of similarity score for instance matching. If equal to 1, keep the max similarity score (non-robust).
(default: 1)
--tracking.track_window TRACKING.TRACK_WINDOW
How many frames back to look for matches (default: 5)
--tracking.min_new_track_points TRACKING.MIN_NEW_TRACK_POINTS
Minimum number of instance points for spawning new track (default: 0)
--tracking.min_match_points TRACKING.MIN_MATCH_POINTS
Minimum points for match candidates (default: 0)
--tracking.img_scale TRACKING.IMG_SCALE
For optical-flow: Image scale (default: 1.0)
--tracking.of_window_size TRACKING.OF_WINDOW_SIZE
For optical-flow: Optical flow window size to consider at each pyramid (default: 21)
--tracking.of_max_levels TRACKING.OF_MAX_LEVELS
For optical-flow: Number of pyramid scale levels to consider (default: 3)
--tracking.save_shifted_instances TRACKING.SAVE_SHIFTED_INSTANCES
If non-zero and tracking.tracker is set to flow, save the shifted instances between elapsed frames (default: 0)
--tracking.kf_node_indices TRACKING.KF_NODE_INDICES
For Kalman filter: Indices of nodes to track. (default: )
--tracking.kf_init_frame_count TRACKING.KF_INIT_FRAME_COUNT
For Kalman filter: Number of frames to track with other tracker. 0 means no Kalman filters will be used. (default: 0) Kalman filters require TRACKING.KF_NODE_INDICES, TRACKING.MAX_TRACKING and TRACKING.MAX_TRACKS or TRACKING.TARGET_INSTANCE_COUNT, TRACKING.TRACKER to be simple or simplemaxtracks, and TRACKING.SIMILARITY to not be normalized_instance.
Examples:#
1. Simple inference without tracking:
sleap-track -m "models/my_model" -o "output_predictions.slp" "input_video.mp4"
2. Inference with multi-model pipelines (e.g., top-down):
sleap-track -m "models/centroid" -m "models/centered_instance" -o "output_predictions.slp" "input_video.mp4"
3. Inference on suggested frames of a labeling project:
sleap-track -m "models/my_model" --only-suggested-frames -o "labels_with_predictions.slp" "labels.v005.slp"
The resulting labels_with_predictions.slp
can then merged into the base labels project from the SLEAP GUI via File –> Merge into project….
4. Inference with simple tracking:
sleap-track -m "models/my_model" --tracking.tracker simple -o "output_predictions.slp" "input_video.mp4"
5. Inference with max tracks limit:
sleap-track -m "models/my_model" --tracking.tracker simplemaxtracks --tracking.max_tracking 1 --tracking.max_tracks 4 -o "output_predictions.slp" "input_video.mp4"
6. Re-tracking without pose inference:
sleap-track --tracking.tracker simplemaxtracks --tracking.max_tracking 1 --tracking.max_tracks 4 -o "retracked.slp" "input_predictions.slp"
7. Select GPU for pose inference:
sleap-track --gpu 1 ...
8. Select subset of frames to predict on:
sleap-track -m "models/my_model" --frames 1000-2000 "input_video.mp4"
9. Use Kalman tracker (not recommended since flow is preferred):
sleap-track -m "models/my_model" --tracking.similarity instance --tracking.tracker simplemaxtracks --tracking.max_tracking 1 --tracking.max_tracks 4 --tracking.kf_init_frame_count 10 --tracking.kf_node_indices 0,1 -o "output_predictions.slp" "input_video.mp4"
Dataset files#
sleap-convert
#
sleap-convert
allows you to convert between various dataset file formats. Amongst other things, it can be used to export data from a SLEAP dataset into an HDF5 file that can be easily used for analysis (e.g., read from MATLAB). See sleap.io.convert
for more information.
usage: sleap-convert [-h] [-o OUTPUT] [--format FORMAT] [--video VIDEO]
input_path
positional arguments:
input_path Path to input file.
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
Path to output file (optional). The analysis format expects an
output path per video in the project. Otherwise, the default
naming convention
<slp path>.<video index>_<video filename>.analysis.h5 will be
used for every video without a specified output path. Multiple
outputs can be specified, each preceeded by --output.
Example (analysis format):
Input:
predictions.slp: Path to .slp file to convert which has two
videos:
- first-video.mp4 at video index 0 and
- second-video.mp4 at video index 1.
Command:
sleap-convert predictions.slp --format analysis --output analysis_video_0.h5
Output analysis files:
analysis_video_0.h5: Analysis file for first-video.mp4
(at index 0) in predictions.slp.
predictions.001_second-video.analysis.h5: Analysis file for
second-video.mp4 (at index 1) in predictions.slp. Since
only a single --output argument was specified, the
analysis file for the latter video is given a default name.
--format FORMAT Output format. Default ('slp') is SLEAP dataset;
'analysis' results in analysis.h5 file; 'analysis.nix' results
in an analysis nix file; 'analysis.csv' results
in an analysis csv file; 'h5' or 'json' results in SLEAP dataset
with specified file format.
--video VIDEO Path to video (if needed for conversion).
For example, to convert a predictions SLP file to an analysis HDF5 file:
sleap-convert --format analysis -o "session1.predictions.analysis.h5" "session1.predictions.slp"
See Analysis examples for how to work with these outputs.
sleap-inspect
#
sleap-inspect
gives you various information about a SLEAP dataset file such as a list of videos and a count of the frames with labels. If you’re inspecting a predictions dataset (i.e., the output from running sleap-track
or inference in the GUI) it will also include details about how those predictions were created (i.e., the models, the version of SLEAP, and any inference parameters).
You can also specify a model folder to get a quick summary of the configuration and metrics (if available).
usage: sleap-inspect [-h] [--verbose] data_path
positional arguments:
data_path Path to labels file (.slp) or model folder
optional arguments:
-h, --help show this help message and exit
--verbose
Rendering#
sleap-render
#
sleap-render
allows you to render videos directly from the CLI. It is used to render video clips with Instances.
usage: sleap-render [-h] [-o OUTPUT] [-f FPS] [--scale SCALE] [--crop CROP] [--frames FRAMES] [--video-index VIDEO_INDEX] data_path
positional arguments:
data_path Path to labels json file
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
Path for saving output (default: None)
--video-index VIDEO_INDEX
Index of video in labels dataset (default: 0)
--frames FRAMES List of frames to predict. Either comma separated list (e.g. 1,2,3)
or a range separated by hyphen (e.g. 1-3). (default is entire video)
-f FPS, --fps FPS Frames per second for output video (default: 25)
--scale SCALE Output image scale (default: 1.0)
--crop CROP Crop size as <width>,<height> (default: None)
--show_edges SHOW_EDGES
Whether to draw lines between nodes (default: 1)
--edge_is_wedge EDGE_IS_WEDGE
Whether to draw edges as wedges (default: 0)
--marker_size MARKER_SIZE
Size of marker in pixels before scaling by SCALE (default: 4)
--palette PALETTE SLEAP color palette to use. Options include: "alphabet", "five+",
"solarized", or "standard" (default: "standard")
--distinctly_color DISTINCTLY_COLOR
Specify how to color instances. Options include: "instances",
"edges", and "nodes" (default: "instances")
--background BACKGROUND
Specify the type of background to be used to save the videos.
Options: original, black, white and grey. (default: "original")
Debugging#
sleap-diagnostic
#
There’s also a script to output diagnostic information which may help us if you need to contact us about problems installing or running SLEAP. If you were able to install the SLEAP Python package, you can run this script with sleap-diagnostic
. Otherwise, you can download diagnostic.py and run python diagnostic.py
.
usage: sleap-diagnostic [-h] [-o OUTPUT] [--gui-check]
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
Path for saving output
--gui-check Check if Qt GUI widgets can be used
Note
For more details about any command, run with the --help
argument (e.g., sleap-track --help
).